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SUMMARY

The mitotic spindle is a microtubule-based assembly that separates the chromosomes during cell division.
As the spindle is basically a mechanical micro machine, the understanding of its functioning is constantly
motivating the development of experimental approaches based on mechanical perturbations, which are
complementary to and work together with the classical genetics and biochemistry methods. Recent
data emerging from these approaches in combination with theoretical modeling led to novel ideas and
significant revisions of the basic concepts in the field. In this Perspective, we discuss the advances
in the understanding of spindle mechanics, focusing on microtubule forces that control chromosome
movements.
Segregation of the genome from a mother cell into two

daughter cells during cell division is one of the fundamental pro-

cesses of life. Physical separation of the chromosomes to oppo-

site poles of the cells is carried out by the spindle (Figure 1), a

fascinating and complex micro machine made of microtubules

and numerous other proteins (McIntosh et al., 2012; Pavin and

Toli�c, 2016; Prosser and Pelletier, 2017). The principal job of

the spindle is to segregate the chromosomes without mistakes.

However, sometimes errors in chromosome segregation occur

and they can cause aneuploidy, a state characterized by a wrong

number of chromosomes in the cell. This type of aberration is

found in almost all human cancers and is a common cause of

miscarriages and genetic disorders, such as Down syndrome

(Santaguida and Amon, 2015; Knouse et al., 2017; Webster

and Schuh, 2017). Thus, studying the spindle is not only impor-

tant as a basic research to understand how the spindle functions

but also to better understand the causes of these serious

diseases.

Spindles have been studied for more than 150 years (McIntosh

and Hays, 2016). However, it is still not clear how the spindle or-

chestrates the forces that segregate the chromosomes. Why is

this biologically crucial micro machine still not understood?

Several thousands of studies on the spindle used various ap-

proaches from molecular and cell biology and genetics and

have provided a list of hundreds of involved proteins, including

tens of motor proteins that walk along microtubules, as well as

a massive amount of experimental data on the spindle. But it is

not always easy to make a coherent picture out of these data

because the main players have complex interactions. Some pro-

teins perform different functions at different locations. For

example, the motor proteins Eg5 from the kinesin-5 family not

only slide the microtubules apart in the spindle center but also

bundle microtubules together at the spindle poles (Mann and

Wadsworth, 2018b). An additional complication arises when

different proteins perform the same function, for example, Eg5

and Kif15 from the kinesin-12 family both slide microtubules

apart (Tanenbaum et al., 2009). These examples show why it is
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not easy to identify the role of each protein and how they interact

together to make a functioning spindle. In this perspective

article, we discuss the mechanobiology of the mitotic spindle

mainly in mammalian cells, putting into context the methods to

experimentally dissect the spindle and the advantages of

combining them with theoretical approaches, with focus on

microtubule-based forces that control chromosomemovements

and positioning.
STUDYING SPINDLE MECHANOBIOLOGY BY
MECHANICAL PERTURBATIONS

The complexity of the mitotic spindle is motivating the develop-

ment of a variety of approaches complementary to genetics and

biochemistry. As the spindle is essentially a mechanical ma-

chine, the understanding of its functioning requires approaches

based on mechanical perturbations. One of the most fruitful me-

chanical tools has been laser ablation, which allows for the cut-

ting of a microtubule bundle and the direct identification of the

direction of forces based on the movement of the microtubule

fragments (Figure 2A). The rationale is that if the fragments

moved toward each other, the microtubule was under compres-

sion before the cut (Figure 2A, left), whereas movement of the

fragments apart was a signature of tension (Figure 2A, middle).

If the microtubule fragments rotate, this implies that rotational

forces were present before the cut (Figure 2A, right). The move-

ment of the fragments can also be more complex, including a

combination of linear and rotational movements. This reasoning

holds for anymaterial and was used to study forces acting on the

kinetochore, a protein complex linking the chromosome with mi-

crotubules. In a pioneering study, one kinetochore was ablated

by a laser, which resulted in the movement of the sister kineto-

chore toward the associated pole, demonstrating inter-kineto-

chore tension (McNeill and Berns, 1981). Since then, laser abla-

tion has been used in numerous works that, for example,

explored the mechanics of spindle microtubules, kinetochores,

and centrosomes in mammalian cells (Aist et al., 1993; Skibbens
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Figure 1. Mitotic Spindle in Metaphase (Left) and Anaphase (Right)
Spindles in human cells (U2OS) with a stable expression of CENP-A-GFP
marking kinetochores (orange) and immunostained for tubulin with Alexa
Fluor-594 (white). Scale bar represents 2 mm.
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et al., 1995; Khodjakov and Rieder, 1996; Khodjakov et al., 2000;

Maiato et al., 2004; Dick and Gerlich, 2013; Elting et al., 2014; Si-

kirzhytski et al., 2014; Cojoc et al., 2016; Kajtez et al., 2016;

Vuku�si�c et al., 2017).

Whereas laser ablation perturbs the existing forces in the

spindle, other techniques allow for applying external forces to

the spindle. In groundbreaking studies, Bruce Nicklas used a

microneedle to stretch, move, or halt chromosomes tomeasure

the forces acting on them (Figure 2B) (Nicklas and Staehly,

1967; Nicklas, 1983). External forces applied by a microneedle

on the spindle (Takagi et al., 2019) or by squeezing the whole

cell (Dumont and Mitchison, 2009a; Itabashi et al., 2012) were

used to change the forces throughout the spindle to study its

mechanical properties (Figure 2C). Optical and magnetic twee-

zers were used to displace the spindle, providing insight into

the forces coming from the cell cortex to position the spindle

(Figure 2D) (Toli�c-Nørrelykke et al., 2005; Garzon-Coral

et al., 2016).

These mechanobiology techniques are combined with light

microscopy to see the structure that will be perturbed and the

outcome of the experiment. The use of fluorescently labeled

proteins helps to see the spindle architecture, including the

localization of different proteins over time before and after the

perturbation. Recent developments of super-resolution tech-

niques open possibilities to explore a more detailed picture

(Sahl et al., 2017). The gold standard for the most detailed spin-

dle architecture, where single microtubules can be identified, is

still electron microscopy, which unfortunately cannot be used

on live cells. All these techniques based on microscopy and

mechanical perturbations reveal different aspects of the spin-

dle, working together toward a complete picture of spindle

mechanobiology.
THEORETICAL MODELING HELPS TO IDENTIFY
PRINCIPLES OF SPINDLE FUNCTIONING

Experiments based on mechanical perturbations typically pro-

vide movies that contain ample information about different as-

pects of the spindle dynamics. To identify the key concepts in

spindle functioning, it is important to find patterns and propose

hypotheses. In the first step, the hypotheses can be expressed

by cartoon models. However, cartoon models cannot be tested

because they are not quantitative. In such situations, theory is a

great tool and is becoming increasingly used in the studies of the

spindle and cell biology, in general. Designing a model allows us

to formulate the hypotheses, whereas solving the model and
verifying it experimentally allows us to identify the key players

and concepts.

In general, a model is a simplified view of the real system, and

thus, cannot describe all of its features, but it becomes a power-

ful tool when it describes themain aspects (Mogilner et al., 2006).

A successful model should not only reproduce the behavior of

the system and pass the experimental tests but also provide

exciting predictions for what would happen in new situations,

motivating new experiments that would otherwise not be an

obvious choice. An exciting example of theoretical work in the

context of spindle mechanics are studies that explored how ki-

netochores are captured by microtubules, which is an important

part of the spindle assembly (Wollman et al., 2005; Paul et al.,

2009; Magidson et al., 2015). The studies found that the prevail-

ing search-and-capture mechanism (Kirschner and Mitchison,

1986) should be revised, as it requires a significantly longer

time to capture all kinetochores than what are observed in cells.

For example, the computational model predicted that enlarging

the kinetochore can speed up the capture process substantially,

which inspired new experiments and led to new concepts (Mag-

idson et al., 2015). Similarly, a theoretical study that explored the

formation of interpolar microtubule bundles (Nédélec, 2002),

which is another important aspect of the spindle assembly, initi-

ated a body of work on the spindle assembly and functioning

based on simulations combined with experiments (Dinarina

et al., 2009; Loughlin et al., 2010).

Things become even more interesting when theory is not used

only within the limited scope of the scientific question that moti-

vated the design of the theory, but rather when the same theory

is used to see the bigger picture. One of the most fascinating ex-

amples of the power of theory comes from 19th century physics

when James Clerk Maxwell developed the theory of electromag-

netism, which he used to predict the existence of electromag-

netic waves and their velocity. Surprisingly, this velocity was

the same as the velocity of light, which led him to propose that

light is an electromagnetic wave. We expect in the future impor-

tant and surprising advances led by theory also in the studies of

the spindle, especially because of the large complexity of the

spindle.

FORCE- AND LENGTH-DEPENDENT MECHANISMS
WITHIN THE METAPHASE SPINDLE

The spindle relies on self-regulating mechanisms for forces and

length.Mechanical forcescanspeeduporslowdownchemical re-

actions. Force affects microtubule polymerization, the speed of

which depends on the difference in the rates of addition and

removal of subunits. Compression force that arises when a

growing microtubule tip encounters an obstacle decreases the

rate of addition because the gap needed for the addition of a sub-

unit, which appears as the tip position fluctuates and occurs less

frequently, resulting in the slowdown of microtubule polymeriza-

tion (Dogterom and Yurke, 1997). Similarly, microtubule depoly-

merization can generate force to move the cargo attached to the

plusend (Lombillo et al., 1995;Grishchuketal., 2005). Forceacting

on the microtubule plus end changes microtubule dynamics and

the detachment rate of the cargo, such as the kinetochore

(Akiyoshi et al., 2010). In contrast to most chemical bonds, which

show increaseddissociation under force (Kramers, 1940;Howard,
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Figure 2. Experimental Tools Based on
Mechanical Perturbations to Study the
Mechanobiology of the Spindle
(A) Laser cutting (bolt sign) of a microtubule (gray
rod) is used as a perturbation (top row), which can
result in three different outcomes (middle row) with
corresponding interpretations of forces acting on
the microtubule (bottom row). Microtubule ends
that are created by laser cutting are marked in or-
ange.
(B) Microneedle tip (orange) contacts a chromo-
some and moves it rightwards.
(C) A cell underneath the coverslip flattens when
compression force (orange arrows) is applied.
(D) Magnetic bead (orange) associated with the
spindle moves the spindle when magnetic force is
exerted on it.
In all figures, please see text for details and ref-
erences.
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2009), tension stabilizes kinetochore attachment to depolymeriz-

ing microtubules (Figure 3A) (Akiyoshi et al., 2010), resembling a

catch-bond mechanism (Sarangapani and Asbury, 2014).

Length of themicrotubules in the spindle also needs to be regu-

lated. One of the key mechanisms is based on the length-depen-

dentaccumulationofmotorproteinsat themicrotubuleend,where

they regulatemicrotubule dynamics (Figure 3B). Motors, kinesin-8

in particular, bind along the entire microtubule, and thus, a longer

microtubule collects more motors. As these motors walk proces-

sively and reach the plus end without detachment, they accumu-

late at this end, which is known as the antenna model (Varga

et al., 2006, 2009). Once at the end, these motors inducemicrotu-

bule catastrophe (Tischer et al., 2009), limiting the microtubule

length. This mechanism promotes the positioning of kinetochores

at the spindle center (Stumpff et al., 2008; Klemm et al., 2018).

Similar to the lengthof individualmicrotubules, theoverlap length

of antiparallel microtubules in the spindle midzone is regulated by

kinesin-4, amicrotubule depolymerase recruitedby the crosslinker

PRC1 in an overlap length-dependent manner, as suggested by

in vitro experiments (Bieling et al., 2010). Within the overlap,

Ase1/PRC1 prevents the microtubules from sliding apart

completely and thereby stabilizes the overlap presumably by

entropic forces generated by Ase1/PRC1 molecules diffusing

within the overlap (Braun et al., 2011; Lansky et al., 2015). In addi-

tion to diffusing crosslinkers, antiparallel overlaps contain motor

proteins that slide the microtubules with respect to each other.

The forces generated by these motor proteins typically depend

on the overlap length. For example, in vitrowork has shown that ki-

nesin-5withinanantiparallel overlapgeneratesahigher forcewhen

the overlap is longer (Shimamoto et al., 2015). In summary, regula-

tion of length together with forces determines how the spindle self-
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organizes and ultimately segregates chro-

mosomes (Dumont and Mitchison, 2009b;

Pavin and Toli�c, 2016; Oriola et al., 2018).

FORCES ACTING ON
CHROMOSOMES IN METAPHASE

The life of a spindle starts with its formation

by interactions between microtubules and

chromosomes mediated by the microtu-
bule-associated proteins and the kinetochore proteins during

prometaphase and ends with chromosome segregation in

anaphase, followed by spindle disassembly in telophase. To

gain a complete insight into spindle functioning, it is important

to understand all the dynamic phases of its life. Asmitosis belongs

to the most complex processes in the cell, studying only one

phase is already a big challenge. Themost studied phase ismeta-

phase because the spindle is in a steady state, which makes re-

sponses to perturbations simpler to interpret than in the dynamic

prometaphase and anaphase.

Metaphase is defined by the eye-catching chromosome align-

ment near the equatorial plane of the spindle. One of the key

questions about the metaphase spindle is what forces act on ki-

netochores to keep them close to the spindle equator. Kineto-

chores are attached to the plus ends of themicrotubules forming

a kinetochore fiber, which pulls the kinetochore toward the pole,

as demonstrated by laser ablation of the kinetochore (Figure 4,

point 1) (McNeill and Berns, 1981). At the kinetochore, microtu-

bules polymerize, which was discovered by microinjecting bio-

tinylated tubulin into mitotic cells to identify the sites of microtu-

bule growth in the spindle (Figure 4, point 2) (Mitchison et al.,

1986). Kinetochore microtubules continuously translocate to-

ward the pole in a process known as poleward flux, visible as

the poleward movement of the photoactivated microtubule seg-

ments (Figure 4, point 3) (Mitchison, 1989). This movement

together with a constant spindle length during metaphase im-

plies that the kinetochore microtubules simultaneously poly-

merize at the kinetochore and depolymerize at the spindle pole

(Figure 4, main drawing).

The pulling forces on kinetochores are opposed by the elastic

forces of the stretched chromatin (Pickett-Heaps et al., 1982), a
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Figure 3. Force- and Length-Dependent Microtubule Dynamics
(A) The effect of force on microtubule dynamics can be studied by optical
tweezers. Tensile force exerted by the laser trap is applied to the kinetochore
at the microtubule tip, resulting in stabilized kinetochore-microtubule
attachment.
(B) Kinesin-8 motors (orange) bind along the microtubules and accumulate at
their tip, where they enhance microtubule catastrophe. Longer microtubules
collect moremotors at the tip (compare profiles highlighted in orange) and thus
more likely undergo catastrophe.
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finding supported by measurements showing that bioriented ki-

netochores are further apart than nonattached ones (Figure 4,

point 4) (Waters et al., 1996). At the same time, chromatin is un-

der polar ejection forces, which are exerted by microtubules

growing from the pole and pushing chromosome arms away

from the pole, which is transmitted to the kinetochore (Figure 4,

point 5) (Rieder et al., 1986).

Thesemechanobiology experiments led to a picture where the

chromosome movements on the spindle are driven by pulling

forces exerted by kinetochore microtubules that pull the kineto-

chore poleward and polar ejection forces exerted by non-kinet-

ochore microtubules that push the chromosome arms away

from the pole (Rieder and Salmon, 1994). To explore the conse-

quences of these concepts, computational models have been

introduced. An early work based on simulations suggested that

a combination of these forces can explain chromosome con-

gression and their behavior during metaphase (Khodjakov

et al., 1999), which was later explored in elegant computational

models that describe the force balance on the chromosome (Jo-

glekar and Hunt, 2002; Civelekoglu-Scholey et al., 2006). The

models show that these forces can explain the general behavior

of chromosomes during metaphase. In particular, the models

predict that kinetochores move back and forth around the equa-

torial plane. The predicted kinetochore oscillations are similar to

those observed in cells (Civelekoglu-Scholey et al., 2013), sup-

porting the model.
FORCES ACTING ON KINETOCHORE FIBER MINUS END

To understand the forces acting on the kinetochore fiber and

thus on the chromosome, it is important to know the molecular

and biophysical events that occur not only on the plus end of

the kinetochore fiber but also on its minus end. The minus

ends of kinetochore fibers are mainly localized at the spindle

pole (McDonald et al., 1992). They are focused at the pole by

the minus-end-directed motors dynein and HSET/kinesin-14

(Endow et al., 1994; Merdes et al., 1996, 2000; Goshima et al.,

2005; Kleylein-Sohn et al., 2012) and are continuously depoly-

merized by Kif2a/kinesin-13 (Rogers et al., 2004; Ganem et al.,

2005). Based on these findings obtained by the classical

methods of protein depletion or inactivation in combination
with microscopy, it was suggested that these motors pull the

kinetochore fiber poleward.

Kinetochore fibers do not interact only with the kinetochore

and the spindle pole but are embedded in a dense network of

spindle microtubules. Understanding the interactions that the

kinetochore fiber makes with other spindle structures is thus

crucial to gain a complete picture of spindle mechanics, and is

a new direction in the field that is currently being intensely

explored (Vladimirou et al., 2013; Kajtez et al., 2016; Elting

et al., 2017).

To study the forces arising through various interactions that a

kinetochore fiber makes with neighboring structures, laser cut-

ting has been the most informative approach because it uncou-

ples the kinetochore fiber from the rest of the spindle. When a

kinetochore fiber is cut, the stub that remains attached to the

kinetochore has a newly created minus end, which is stable

and does not depolymerize, thus allowing for studies of the

stub movement to assess the forces acting on it (Figure 5A).

Theminus end of the stub remains free for some time but is even-

tually pulled toward the pole and reincorporated into the spindle

(Maiato et al., 2004). These pulling forces are generated by

dynein that accumulates together with nuclear mitotic apparatus

protein (NuMa) at the minus end of the stub and walks along the

neighboring spindle microtubules toward the pole (Figure 5A,

long time) (Elting et al., 2014; Sikirzhytski et al., 2014).

FORCES ARISING FROM THE INTERACTION BETWEEN
THE BRIDGING AND KINETOCHORE FIBER

Laser cutting experiments of the kinetochore fiber led to the dis-

covery of the mechanism of reincorporation, but the same exper-

iments were used to study the forces in the spindle (Kajtez et al.,

2016). In the short time between the cut of the kinetochore fiber

and its reincorporation in the spindle, the stubshowsan interesting

behavior, where it rotates with the minus end moving away from

the spindle (Figure 5A, short time). The rotation stops when the

stub becomes aligned with the sister kinetochore fiber. This rota-

tionalmovement of the stub led to a newhypothesis that rotational

forces are present in the kinetochore fiber before the cut.

What is the origin of these rotational forces? A possible answer

could be that the sister kinetochore fibers are connected not only

by the soft chromatin but also more firmly by a flexible material

that is bent due to rotational forces before the cut and

straightens as these forces vanish after the cut. This flexible ma-

terial could be amicrotubule bundle, whichwas indeed observed

in the region between sister kinetochores, and its movement

together with the kinetochore fibers after the cut demonstrated

their mechanical connection (Kajtez et al., 2016). This bundle is

called as a bridging fiber because it acts as a bridge between sis-

ter kinetochore fibers. This finding is in agreement with the elec-

tron microscopy images showing that in the region between the

pole and the vicinity of the kinetochore, numerous microtubules

intermingle and form a single thick bundle, which separates into

two bundles—the kinetochore fiber that ends at the kinetochore

and the bridging fiber. The bridging fiber passes the region of the

sister kinetochores and contacts not only the sister kinetochore

fiber but also the neighboring fibers (McDonald et al., 1992; Mas-

tronarde et al., 1993; O’Toole et al., 2020). Based on the findings

of the bridging fiber, a new picture of spindle mechanics
Developmental Cell 56, January 25, 2021 195



Figure 4. A Segment of a Metaphase
Spindle with Associated Forces
Microtubules (gray lines) extend from the spindle
poles (gray hemispheres) toward kinetochores
(gray spheres) and chromosomes. Motor proteins
(orange pictograms) bound to spindle poles and
chromosomes interact with microtubules.
Inset 1, laser cut (bolt sign) of the right kinetochore
results in the movement of the left kinetochore
leftwards.
Inset 2, integration of labeled tubulin (orange
spheres) at the microtubule tips reveals microtu-
bule polymerization at the kinetochores.
Inset 3, labeled microtubule segments (orange
lines) move toward the spindle pole, which is
known as poleward flux.
Inset 4, elastic force in the chromatin (orange
arrows) brings the kinetochores toward each
other when pulling forces by microtubules are
eliminated.
Inset 5, upon laser cut (bolt sign), a chromo-
some fragment moves away from the pole due
to forces exerted by chromokinesins (orange
pictogram), motor proteins attached to chro-
mosome arms.
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emerged, where the interaction between the bridging and kinet-

ochore fibers implies new forces on the kinetochore fiber that are

transmitted to the chromosome (Simuni�c and Toli�c, 2016; Toli�c

and Pavin, 2016; Toli�c, 2018).

Together with the prevailing picture of the system, theoretical

models need to be revised to include the bridging fiber. In a

revised model, sister kinetochore fibers interact with the bridging

fiber (Kajtez et al., 2016), which ismodeled as an interpolar bundle

whose curved shape results from bending forces (Rubinstein

et al., 2009). A model with a bridging fiber elucidates the intricate

force balance in the kinetochore and bridging fiber (Kajtez et al.,

2016). The bridging fiber is under compression, which balances

the tension acting on kinetochores and within the neighboring re-

gion of the kinetochore fiber (Figure 5B). Interestingly, the pole-

proximal part of the kinetochore fiber is also under compression,

in contrast to the kinetochore-proximal part of the same fiber,

which is under tension. This apparent paradox that tension and

compression coexist along a single kinetochore fiber was identi-

fied and discussed previously (Dumont and Mitchison, 2009b),

and the compression in the bridging fiber offers a simple solution.

The bridging fiber model was strengthened by testing the pre-

diction that cutting of the kinetochore fiber at different locations

will have a different effect on inter-kinetochore tension

(Figure 5C). Indeed, experiments showed that the distance be-

tween sister kinetochores decreased to a larger extent when

the cut was closer to the kinetochore (Kajtez et al., 2016; Milas

and Toli�c, 2016; Elting et al., 2017;Maiato et al., 2017). This result

could not be explained by a classical view of spindle mechanics

but supports the bridging fiber model.

Sophisticated experiments in which a kinetochore fiber was

pulled by a microneedle showed that sister kinetochore fibers

are strongly linked and do not pivot around the kinetochore re-

gion but rather around the pole (Figure 5D) (Suresh et al.,

2020). These findings suggest reinforcements near kineto-

chores, consistent with a bridging fiber. After extensive pulling,
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kinetochore fiber grows by polymerization at the kinetochore

(Long et al., 2020).

ROTATIONAL FORCES AND THE TWISTED SPINDLE

In the bridging fiber model, surprising findings appear when

the model is used to describe a three-dimensional architec-

ture of the whole spindle. In this case, rotational forces can

have an arbitrary direction (Figure 6A, bending + twisting)

rather than acting within a plane (Figure 6A, bending). This

model predicts that the microtubule bundles in the spindle

extend in three dimensions, having a twisted shape rather

than lying in a plane, like meridians on the Earth (Figure 6B)

(Novak et al., 2018).

Motivated by this unusual prediction, experiments showed

that the bridging fibers indeed display a twisted shape (Novak

et al., 2018). The twisted shape is visible as the rotation of

bridging fibers around the spindle axis when the spindle is

observed along the axis. The fibers show a left-handed twist,

making the whole spindle a chiral structure (Figure 6B). Twist

was observed also in rod-shaped spindles in yeasts, where indi-

vidual microtubules within the bundle twist around each other

(Ding et al., 1993; Winey et al., 1995). Recent 3D reconstructions

of the microtubule organization in spindles of human cells show

an occasional twist of microtubules within a bundle (O’Toole

et al., 2020). It will be interesting to explore the twist of microtu-

bules within bundles and of entire bundles in spindles of different

species.

The twisted shapes of microtubule bundles are most likely

generated by motor proteins, given that motors exert rotational

forces on the microtubule in addition to linear forces. In vitro

studies have shown that the mitotic motors kinesin-14 (Ncd)

(Walker et al., 1990; Nitzsche et al., 2016; Mitra et al., 2020), ki-

nesin-5 (Eg5) (Yajima et al., 2008), kinesin-8 (Kip3) (Bormuth

et al., 2012; Bugiel et al., 2015; Mitra et al., 2018), and



Figure 5. Forces Acting on Kinetochore and
Bridging Fiber
(A) Movement of themicrotubule stub created by a
laser cut (orange bolt), was studied on long and
short timescales. On a long timescale, motor
proteins (orange pictogram) accumulate at the
newly created minus end of the microtubule stub
and pull on it. On a short timescale, elasticity within
the bridging fiber (orange line) straightens it and
drives the rotational movement of the microtubule
stub.
(B) Tension in the kinetochore fiber (orange ar-
rows) is balanced by compression in the bridging
fiber (gray arrows, middle). Kinetochore microtu-
bules (light gray lines) are bound to kinetochores
(gray spheres) and interact laterally with bridging
microtubules (dark gray lines).
(C) Upon laser cutting far away from the kineto-
chore, the long stub of the kinetochore fiber that
remains after the cut stays connected to the
bridging fiber, which withstands the inter-kineto-
chore tension, thus the kinetochores keep their
distance (top). Upon laser cutting close to the
kinetochore, the kinetochore fiber becomes
disconnected from the bridge and the tension is
released, which leads to a decrease of the dis-
tance between the kinetochores (bottom).
(D) Pulling of a kinetochore fiber by a microneedle
(orange circle) rotates the kinetochore fiber around
the spindle pole, but sister kinetochore fibers
remain aligned in the region close to the kineto-
chores.
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cytoplasmic dynein (Can et al., 2014), can generate rotational

forces on the microtubule by stepping sideways while moving

along the microtubule. In the spindle, the twisted shape of the

bundles depends on kinesin-5 (Novak et al., 2018) and likely

also on other motors, which may generate rotational forces in

the overlap zone of antiparallel microtubules and at the spindle

pole. In the overlap zone, motors may twist the antiparallel mi-

crotubules around each other, while the motors attached to the

pole may rotate the microtubules as they walk along them (Toli�c

et al., 2019). To explore these hypotheses, new experiments and

theoretical models are needed with the aim to understand how

rotational forces are generated and balanced in the spindle.

Moreover, the biological function of the spindle chirality is

currently unknown. The findings of rotational forces on the scale

of individual motor proteins and the entire spindle open an

exciting new area of research on the mechanisms and the bio-

logical roles of rotational forces in mitosis.
THEROLEOFSLIDING FORCES IN THEBRIDGING FIBER

The mechanical role of the bridging fiber is not only restricted to

the metaphase but also prominent in the anaphase (Figure 7).

The anaphase appears to be very dynamic and the relative

movements of the main constituents of the spindle occur: sister

kinetochores move with respect to kinetochore fibers, kineto-

chores fibers move with respect to the poles, and microtubules

in the overlap region move with respect to each other (Gorbsky

et al., 1987; Saxton andMcIntosh, 1987; Zhai et al., 1995). These

coherent movements drive separation of sister kinetochores and

spindle elongation, processes that are crucial for chromosome

segregation (Scholey et al., 2016; Asbury, 2017; Vuku�si�c

et al., 2019b).
The role of bridging fibers in kinetochore separation was

shown by laser cutting experiments, which revealed that a sin-

gle unit consisting of two sister kinetochore fibers and their

bridge is able to separate the kinetochores, even when they

are not connected to the spindle pole (Vuku�si�c et al., 2017).

The antiparallel microtubules in the bridging fiber slide apart,

and thus, the bridging fiber is under compression as in meta-

phase. These sliding forces push the attached kinetochore

fibers apart due to strong crosslinks between the bridging

and kinetochore fibers, separating sister kinetochores and

pushing the spindle poles apart (Vuku�si�c et al., 2017). While

the kinetochores move apart, the overlap region of the

bridging microtubules shrinks (Figure 7) (Pamula et al.,

2019). The kinetochores keep moving with the same velocity

after exiting the overlap region, suggesting that even a short

overlap is sufficient to properly separate the kinetochores.

An alternative model based on the inside-out pushing of cen-

tral spindle microtubules against the chromosomes has been

proposed for chromosome segregation in Caenorhabditis ele-

gans (Dumont et al., 2010; Nahaboo et al., 2015; Laband et al.,

2017), which has also been suggested to be relevant for hu-

man cells (Yu et al., 2019).

What roles sliding forces play within the bridging fiber in the

metaphase remains an open question. Sliding in the bridge

may drive poleward flux of the bridging microtubules and also

of kinetochore microtubules due to lateral attachments between

the bridging and kinetochore microtubules of the same orienta-

tion, as in the anaphase. Interestingly, the same motors that

elongate the spindle in the anaphase, kinesin-4 and kinesin-5

(Vukusic et al., 2019a), are involved in driving poleward flux in

the metaphase (Steblyanko et al., 2020). Kinesin-4 is localized

on chromosome arms, where it exerts polar ejection forces,

which contribute to the flux (Steblyanko et al., 2020). However,
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Figure 6. Bending and Twisting by
Rotational Forces and Spindle Chirality
(A) Elastic rod (gray) is straight in a relaxed state. It
becomes twisted (orange line) when the twisting
moment is applied, bent when bending is applied,
and attains a complex shape when both moments,
bending and twisting, are applied.
(B) Three projections of a simplified spindle
showing its chiral structure. A view of a spindle from
an arbitrary angle (top, left), together with eye signs
marking the view angle for the side view (1) and the
end-on view (2). Interpolar microtubule bundles are
depicted by gray lines and one bundle is highlighted
in orange. Bending and twisting moments (curved
arrows) acting on the bundle generate the observed
chiral shapes.
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kinesin-4 is also localized in the bridging fiber during the meta-

phase (Jagri�c et al., 2019), as well as kinesin-5 (Kajtez et al.,

2016; Mann and Wadsworth, 2018a); thus, it will be interesting

to explore the role of these motors in the generation of sliding

forces within the bridging fiber.

Forces arising from the interaction between the kinetochore

fibers and the bridging fibers may be important for kineto-

chore positioning at the spindle equator. Optogenetic experi-

ments showed that the bridging fiber improves kinetochore

alignment (Jagri�c et al., 2019). We speculate that if a kineto-

chore pair is displaced toward one pole, the overlap between

the kinetochore fiber on the other side and the bridging fiber is

longer and thus contains more motors, which generate larger

force that pulls the kinetochores toward the spindle center.

Thus, the bridge may help to keep the kinetochores in the

center by sliding and length-dependent forces on kinetochore

fibers.

Sliding forces are generated in the central part of the spindle.

However, to understand the spindle mechanobiology, it is also

important to understand the forces in the polar regions. Electron

microscopy and tomography have shown that minus ends of mi-

crotubules are not only found at the pole but also along the mi-

crotubules throughout the spindle (Mastronarde et al., 1993;

O’Toole et al., 2020). It will be interesting to explore how the dy-

namics of these minus ends are regulated, which together with

the sliding determines the spindle length and keeps it constant

during the metaphase.
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The largest steps in the understanding of spindle mechanobiol-

ogy have been driven by applying new tools based on mechan-

ical perturbations, in pioneering as well as most recent works.

This trend will surely continue, and combinations of the existing

tools will also be important. For example, performing laser abla-

tion or microneedle experiments on a super-resolution micro-

scope will reveal the dynamics and interactions between sepa-

rate microtubule bundles or even individual microtubules,

which cannot be distinguished by confocal microscopy.

Spindlemechanobiology uses force and length as the language

to tell its story because the regulation of these two players defines

how the spindle self-organizes and performs its function. Thus,

the cell needs to sense them in order to control them. Moreover,

the cell uses force and length sensing to modulate different bio-

logical functions, suchasprogression throughmitosis.Many force

and length regulation mechanisms are known, but due to their

complexity, a lot remains to be learned. Here, theory is a great

tool to synthesize diverse ideas into a bigger coherent picture.

The tools and concepts discussed here are relevant not only

for the understanding of the mechanobiology of a well-func-

tioning spindle but also for situations where the spindle makes

errors in chromosome segregation. As such errors are character-

istics of several serious diseases, revealing their mechanical or-

igins and the molecular players involved is of general interest

because of potential medical applications.
Figure 7. Chromosome Movements and
Bridging Microtubule Overlap during
Anaphase
Mitotic spindle during late metaphase (1), early
anaphase (2), and mid-anaphase (3). The distance
between kinetochores (orange circles) increases
in time, whereas the antiparallel overlap region of
bridgingmicrotubules shrinks. Typical time course
for kinetochore distance and length of the overlap
is plotted in the graph.
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Nédélec, F. (2002). Computer simulations reveal motor properties generating
stable antiparallel microtubule interactions. J. Cell Biol. 158, 1005–1015.

Nicklas, R.B. (1983). Measurements of the force produced by the mitotic spin-
dle in anaphase. J. Cell Biol. 97, 542–548.

Nicklas, R.B., and Staehly, C.A. (1967). Chromosome micromanipulation. I.
The mechanics of chromosome attachment to the spindle. Chromosoma
21, 1–16.

Nitzsche, B., Dudek, E., Hajdo, L., Kasprzak, A.A., Vilfan, A., and Diez, S.
(2016). Working stroke of the kinesin-14, ncd, comprises two substeps of
different direction. Proc. Natl. Acad. Sci. USA 113, E6582–E6589.

Novak, M., Polak, B., Simuni�c, J., Boban, Z., Kuzmi�c, B., Thomae, A.W., Toli�c,
I.M., and Pavin, N. (2018). The mitotic spindle is chiral due to torques within
microtubule bundles. Nat. Commun. 9, 3571.

Oriola, D., Needleman, D.J., and Brugués, J. (2018). The physics of the meta-
phase spindle. Annu. Rev. Biophys. 47, 655–673.

O’Toole, E., Morphew, M., andMcIntosh, J.R. (2020). Electron tomography re-
veals aspects of spindle structure important for mechanical stability at meta-
phase. Mol. Biol. Cell 31, 184–195.

Pamula, M.C., Carlini, L., Forth, S., Verma, P., Suresh, S., Legant, W.R., Khod-
jakov, A., Betzig, E., and Kapoor, T.M. (2019). High-resolution imaging reveals
how the spindle midzone impacts chromosome movement. J. Cell Biol. 218,
2529–2544.

Paul, R., Wollman, R., Silkworth, W.T., Nardi, I.K., Cimini, D., and Mogilner, A.
(2009). Computer simulations predict that chromosome movements and rota-
tions accelerate mitotic spindle assembly without compromising accuracy.
Proc. Natl. Acad. Sci. USA 106, 15708–15713.

Pavin, N., and Toli�c, I.M. (2016). Self-organization and forces in the mitotic
spindle. Annu. Rev. Biophys. 45, 279–298.

Pickett-Heaps, J.D., Tippit, D.H., and Porter, K.R. (1982). Rethinking mitosis.
Cell 29, 729–744.

Prosser, S.L., and Pelletier, L. (2017). Mitotic spindle assembly in animal cells:
a fine balancing act. Nat. Rev. Mol. Cell Biol. 18, 187–201.

Rieder, C.L., Davison, E.A., Jensen, L.C., Cassimeris, L., and Salmon, E.D.
(1986). Oscillatory movements of monooriented chromosomes and their posi-
tion relative to the spindle pole result from the ejection properties of the aster
and half-spindle. J. Cell Biol. 103, 581–591.

Rieder, C.L., and Salmon, E.D. (1994). Motile kinetochores and polar ejection
forces dictate chromosome position on the vertebrate mitotic spindle. J. Cell
Biol. 124, 223–233.

Rogers, G.C., Rogers, S.L., Schwimmer, T.A., Ems-McClung, S.C., Walczak,
C.E., Vale, R.D., Scholey, J.M., and Sharp, D.J. (2004). Two mitotic kinesins
cooperate to drive sister chromatid separation during anaphase. Nature 427,
364–370.

Rubinstein, B., Larripa, K., Sommi, P., andMogilner, A. (2009). The elasticity of
motor-microtubule bundles and shape of the mitotic spindle. Phys. Biol. 6,
016005.

Sahl, S.J., Hell, S.W., and Jakobs, S. (2017). Fluorescence nanoscopy in cell
biology. Nat. Rev. Mol. Cell Biol. 18, 685–701.

Santaguida, S., and Amon, A. (2015). Short- and long-term effects of chromo-
some mis-segregation and aneuploidy. Nat. Rev. Mol. Cell Biol. 16, 473–485.

Sarangapani, K.K., and Asbury, C.L. (2014). Catch and release: how do kinet-
ochores hook the right microtubules during mitosis? Trends Genet 30,
150–159.

Saxton, W.M., and McIntosh, J.R. (1987). Interzone microtubule behavior in
late anaphase and telophase spindles. J. Cell Biol. 105, 875–886.

Scholey, J.M., Civelekoglu-Scholey, G., and Brust-Mascher, I. (2016).
Anaphase B. Biology (Basel) 5, 55.

http://refhub.elsevier.com/S1534-5807(20)30878-9/sref39
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref39
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref39
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref40
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref40
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref40
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref40
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref41
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref41
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref41
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref42
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref42
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref42
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref43
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref43
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref44
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref44
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref44
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref44
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref45
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref45
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref46
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref46
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref46
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref47
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref47
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref48
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref48
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref49
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref49
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref50
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref50
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref51
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref51
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref52
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref52
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref53
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref53
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref53
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref54
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref54
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref54
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref55
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref55
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref55
https://doi.org/10.19185/matters.201603000025
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref57
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref57
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref58
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref58
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref59
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref59
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref59
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref60
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref60
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref60
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref60
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref61
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref61
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref62
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref62
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref62
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref63
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref63
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref64
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref64
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref65
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref65
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref65
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref66
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref66
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref66
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref67
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref67
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref67
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref67
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref67
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref67
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref68
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref68
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref69
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref69
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref69
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref70
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref70
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref70
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref70
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref71
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref71
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref71
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref71
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref72
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref72
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref72
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref73
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref73
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref74
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref74
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref75
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref75
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref75
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref75
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref76
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref76
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref76
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref77
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref77
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref77
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref77
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref78
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref78
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref78
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref79
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref79
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref80
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref80
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref81
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref81
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref81
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref82
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref82
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref83
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref83


ll
Perspective
Shimamoto, Y., Forth, S., and Kapoor, T.M. (2015). Measuring pushing and
braking forces generated by ensembles of Kinesin-5 crosslinking two microtu-
bules. Dev. Cell 34, 669–681.

Sikirzhytski, V., Magidson, V., Steinman, J.B., He, J., Le Berre,M., Tikhonenko,
I., Ault, J.G., McEwen, B.F., Chen, J.K., Sui, H., et al. (2014). Direct kineto-
chore-spindle pole connections are not required for chromosome segregation.
J. Cell Biol. 206, 231–243.

Simuni�c, J., and Toli�c, I.M. (2016). Mitotic spindle assembly: building the
bridge between sister K-fibers. Trends Biochem. Sci. 41, 824–833.

Skibbens, R.V., Rieder, C.L., and Salmon, E.D. (1995). Kinetochore motility af-
ter severing between sister centromeres using laser microsurgery: evidence
that kinetochore directional instability and position is regulated by tension.
J. Cell Sci. 108, 2537–2548.

Steblyanko, Y., Rajendraprasad, G., Osswald, M., Eibes, S., Jacome, A., Ge-
ley, S., Pereira, A.J., Maiato, H., and Barisic, M. (2020). Microtubule poleward
flux in human cells is driven by the coordinated action of four kinesins. EMBO
J, e105432.

Stumpff, J., von Dassow, G., Wagenbach, M., Asbury, C., and Wordeman, L.
(2008). The Kinesin-8 motor Kif18A suppresses kinetochore movements to
control mitotic chromosome alignment. Dev. Cell 14, 252–262.

Suresh, P., Long, A.F., and Dumont, S. (2020). Microneedle manipulation of the
mammalian spindle reveals specialized, short-lived reinforcement near chro-
mosomes. eLife 9, 528.

Takagi, J., Sakamoto, R., Shiratsuchi, G., Maeda, Y.T., and Shimamoto, Y.
(2019). Mechanically distinct microtubule arrays determine the length and
force response of the meiotic spindle. Dev. Cell 49, 267–278.e5.

Tanenbaum, M.E., Mac�urek, L., Janssen, A., Geers, E.F., Alvarez-Fernández,
M., and Medema, R.H. (2009). Kif15 cooperates with eg5 to promote bipolar
spindle assembly. Curr. Biol. 19, 1703–1711.

Tischer, C., Brunner, D., and Dogterom, M. (2009). Force- and kinesin-8-
dependent effects in the spatial regulation of fission yeast microtubule dy-
namics. Mol. Syst. Biol. 5, 250.

Toli�c, I.M. (2018). Mitotic spindle: kinetochore fibers hold on tight to interpolar
bundles. Eur. Biophys. J. 47, 191–203.

Toli�c, I.M., Novak, M., and Pavin, N. (2019). Helical twist and rotational forces
in the mitotic spindle. Biomolecules 9, 132.

Toli�c, I.M., and Pavin, N. (2016). Bridging the gap between sister kinetochores.
Cell Cycle 15, 1169–1170.

Toli�c-Nørrelykke, I.M., Sacconi, L., Stringari, C., Raabe, I., and Pavone, F.S.
(2005). Nuclear and division-plane positioning revealed by optical microma-
nipulation. Curr. Biol. 15, 1212–1216.
Varga, V., Helenius, J., Tanaka, K., Hyman, A.A., Tanaka, T.U., and Howard, J.
(2006). Yeast kinesin-8 depolymerizes microtubules in a length-dependent
manner. Nat. Cell Biol. 8, 957–962.

Varga, V., Leduc, C., Bormuth, V., Diez, S., and Howard, J. (2009). Kinesin-8
motors act cooperatively to mediate length-dependent microtubule depoly-
merization. Cell 138, 1174–1183.

Vladimirou, E., McHedlishvili, N., Gasic, I., Armond, J.W., Samora, C.P., Mer-
aldi, P., and Mcainsh, A.D. (2013). Nonautonomous movement of chromo-
somes in mitosis. Dev. Cell 27, 60–71.

Vuku�si�c, K., Bu �da, R., Bosilj, A., Milas, A., Pavin, N., and Toli�c, I.M. (2017).
Microtubule sliding within the bridging fiber pushes kinetochore fibers apart
to segregate chromosomes. Dev. Cell 43, 11–23.e6.

Vukusic, K., Bu �da, R., Ponjavi�c, I., Risteski, P., and Toli�c, I.M. (2019a). Chro-
mosome segregation is driven by joint microtubule sliding action of kinesins
KIF4A and EG5. bioRxiv. https://doi.org/10.1101/863381.

Vuku�si�c, K., Bu �da, R., and Toli�c, I.M. (2019b). Force-generating mechanisms
of anaphase in human cells. J. Cell Sci. 132, 231985.

Walker, R.A., Salmon, E.D., and Endow, S.A. (1990). The Drosophila claret
segregation protein is a minus-end directed motor molecule. Nature 347,
780–782.

Waters, J.C., Skibbens, R.V., and Salmon, E.D. (1996). Oscillating mitotic newt
lung cell kinetochores are, on average, under tension and rarely push. J. Cell
Sci. 109, 2823–2831.

Webster, A., and Schuh, M. (2017). Mechanisms of aneuploidy in human eggs.
Trends Cell Biol 27, 55–68.

Winey, M., Mamay, C.L., O’Toole, E.T., Mastronarde, D.N., Giddings, T.H.,
McDonald, K.L., and McIntosh, J.R. (1995). Three-dimensional ultrastructural
analysis of the Saccharomyces cerevisiae mitotic spindle. J. Cell Biol. 129,
1601–1615.

Wollman, R., Cytrynbaum, E.N., Jones, J.T., Meyer, T., Scholey, J.M., andMo-
gilner, A. (2005). Efficient chromosome capture requires a bias in the ‘search-
and-capture’ process during mitotic-spindle assembly. Curr. Biol. 15,
828–832.

Yajima, J., Mizutani, K., and Nishizaka, T. (2008). A torque component present
in mitotic kinesin Eg5 revealed by three-dimensional tracking. Nat. Struct. Mol.
Biol. 15, 1119–1121.

Yu, C.H., Redemann, S., Wu, H.Y., Kiewisz, R., Yoo, T.Y., Conway, W., Farha-
difar, R., M€uller-Reichert, T., andNeedleman, D. (2019). Central-spindle micro-
tubules are strongly coupled to chromosomes during both anaphase A and
anaphase B. Mol. Biol. Cell 30, 2503–2514.

Zhai, Y., Kronebusch, P.J., and Borisy, G.G. (1995). Kinetochore microtubule
dynamics and the metaphase-anaphase transition. J. Cell Biol. 131, 721–734.
Developmental Cell 56, January 25, 2021 201

http://refhub.elsevier.com/S1534-5807(20)30878-9/sref84
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref84
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref84
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref85
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref85
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref85
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref85
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref86
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref86
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref86
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref86
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref87
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref87
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref87
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref87
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref88
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref88
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref88
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref88
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref89
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref89
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref89
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref90
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref90
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref90
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref91
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref91
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref91
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref92
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref92
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref92
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref92
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref93
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref93
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref93
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref94
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref94
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref94
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref95
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref95
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref95
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref96
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref96
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref96
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref97
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref97
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref97
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref97
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref98
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref98
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref98
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref99
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref99
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref99
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref100
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref100
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref100
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref101
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref101
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref101
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref101
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref101
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref101
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref101
https://doi.org/10.1101/863381
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref103
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref103
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref103
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref103
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref103
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref103
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref104
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref104
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref104
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref105
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref105
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref105
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref106
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref106
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref107
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref107
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref107
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref107
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref108
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref108
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref108
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref108
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref109
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref109
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref109
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref110
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref110
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref110
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref110
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref110
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref111
http://refhub.elsevier.com/S1534-5807(20)30878-9/sref111

	Mechanobiology of the Mitotic Spindle
	Acknowledgments
	References


